Inexact Variants of the Proximal Point Algorithm without Monotonicity
نویسندگان
چکیده
This paper studies convergence properties of inexact variants of the proximal point algorithm when applied to a certain class of nonmonotone mappings. The presented algorithms allow for constant relative errors, in the line of the recently proposed hybrid proximal-extragradient algorithm. The main convergence result extends a recent work of the second author, where exact solutions for the proximal subproblems were required. We also show that the linear convergence property is preserved in the case when the inverse of the operator is locally Lipschitz continuous near the origin. As an application, we give a convergence analysis for an inexact version of the proximal method of multipliers for a rather general family of problems which includes variational inequalities and constrained optimization problems.
منابع مشابه
Global convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملInexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds
In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...
متن کاملRelatively Inexact Proximal Point Algorithm and Linear Convergence Analysis
Based on a notion of relatively maximal m -relaxed monotonicity, the approximation solvability of a general class of inclusion problems is discussed, while generalizing Rockafellar’s theorem 1976 on linear convergence using the proximal point algorithm in a real Hilbert space setting. Convergence analysis, based on this newmodel, is simpler and compact than that of the celebrated technique of R...
متن کاملDual convergence for penalty proximal point algorithms in convex programming
We consider an implicit iterative method in convex programming which combines inexact variants of the proximal point algorithm, with parametric penalty functions. We investigate a multiplier sequence which is explicitly computed in terms of the primal sequence generated by the iterative method, providing some conditions on the parameters in order to ensure convergence towards a particular dual ...
متن کاملAn inexact alternating direction method with SQP regularization for the structured variational inequalities
In this paper, we propose an inexact alternating direction method with square quadratic proximal (SQP) regularization for the structured variational inequalities. The predictor is obtained via solving SQP system approximately under significantly relaxed accuracy criterion and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 13 شماره
صفحات -
تاریخ انتشار 2003