Inexact Variants of the Proximal Point Algorithm without Monotonicity

نویسندگان

  • Alfredo N. Iusem
  • Teemu Pennanen
  • Benar Fux Svaiter
چکیده

This paper studies convergence properties of inexact variants of the proximal point algorithm when applied to a certain class of nonmonotone mappings. The presented algorithms allow for constant relative errors, in the line of the recently proposed hybrid proximal-extragradient algorithm. The main convergence result extends a recent work of the second author, where exact solutions for the proximal subproblems were required. We also show that the linear convergence property is preserved in the case when the inverse of the operator is locally Lipschitz continuous near the origin. As an application, we give a convergence analysis for an inexact version of the proximal method of multipliers for a rather general family of problems which includes variational inequalities and constrained optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Inexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds

In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...

متن کامل

Relatively Inexact Proximal Point Algorithm and Linear Convergence Analysis

Based on a notion of relatively maximal m -relaxed monotonicity, the approximation solvability of a general class of inclusion problems is discussed, while generalizing Rockafellar’s theorem 1976 on linear convergence using the proximal point algorithm in a real Hilbert space setting. Convergence analysis, based on this newmodel, is simpler and compact than that of the celebrated technique of R...

متن کامل

Dual convergence for penalty proximal point algorithms in convex programming

We consider an implicit iterative method in convex programming which combines inexact variants of the proximal point algorithm, with parametric penalty functions. We investigate a multiplier sequence which is explicitly computed in terms of the primal sequence generated by the iterative method, providing some conditions on the parameters in order to ensure convergence towards a particular dual ...

متن کامل

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003